芝加哥大学CS硕士项目介绍

留学专业联盟|计算机专业留学2022年11月07日 14:48
芝加哥大学CS硕士项目与众不同的是根据学生的职业目标和背景定制课程作业,对于没有数学或编程背景的学生,提供数学和编程先修课程,向学生介绍计算以及成功开始硕士课程所需的基本和入门技能。

计算机专业留学
【美国计算机专业】提供2023年美国大学计算机专业本科、研究生院校排名,美国计算机最好的学校,美国计算机专业介绍,计算机专业就业前景等信息,为准备去美国…

访问计算机专业留学主页
专业动态
课程介绍
专业排名

  芝加哥大学位于美国国际金融中心芝加哥,1890年由石油大王约翰·洛克菲勒创办,是世界著名私立研究型大学。该校素以盛产诺贝尔奖得主而闻名,常年位列各个大学排行榜世界前十。  

    推荐理由:世界一流名校,转专业申请友好。

  项目详解

  Master‘s Program in Computer Science (MPCS)

  • 就业导向,晚上上课,Hyde Park校区

  • 9-Course MS in Computer Science Program: 9个月毕业

  • 12-Course MS in Computer Science Specialization Program: (15个月毕业),可以更进一步选择方向:software engineering, mobile computing, data analytics, and high-performance computing

  Pre-Doctoral MS in Computer Science

  • 12门课程,研究导向

  • 需要有CS背景

  • 为申请博士作准备

  申请要点

  • GRE Quantitative: 80th percentile and above

  • GMAT Quantitative: 70th percentile and above

  • TOEFL 90+

  • IELTS7.0(单项7.0)

  • 对转专业相对友好

  • 对编程和数学有背景要求,具体如下

  Programming Topics:

  1. Data types (native and derived)数据类型(原生和派生)

  2. Operators, precedence, and expressions运算符,优先级和表达式

  3. Assignment and statements分配和语句

  4. Control flow (conditionals and iteration)控制流(条件和迭代)

  5. Functions, return types, and parameters函数,返回类型和参数

  6. Recursion递归

  7. Console and file I/O控制台和文件I/O

  Math Prerequisite Topics

  1. Logic: propositional logic; quantifiers. 逻辑:命题逻辑;量词。

  2. Mathematical reasoning: methods of proof, direct proof and indirect proof. Mathematical induction and strong induction.

  数学推理:证明方法,直接证明和间接证明。数学归纳法和强归纳法。

  3. Counting: methods of counting; permutations, combinations, binomial theorem, pigeonhole principle, inclusion-exclusion.

  计数:计数方法;排列,组合,二项式定理,鸽子洞原理,包含-排除。

  4. Discrete probability: discrete probability spaces; conditional probability and independence; Bernoulli trials, Bayes’s theorem, random variables and expected value; variance, geometric and binomial distributions.

  离散概率:离散概率空间;条件概率与独立性;伯努利试验、贝叶斯定理、随机变量和期望值;方差,几何分布和二项分布。

  5. Asymptotic notation.渐进符号

  6. Recurrences and methods of solving recurrences. 递归及解递归的方法

  7. Graphs: simple graphs, isomorphism, paths, trees. 图:简单图,同构,路径,树。

  8. Modular arithmetic, divisibility, prime numbers; GCD and Euclid’s algorithm, Fermat’s little theorem模算术,可分性,素数;GCD和欧几里德算法,费马小定理

我要咨询

我要咨询

您的姓名 所在地区
联系电话 QQ
意向国家 邮箱Email
咨询内容